
Scientific Paper Advisor
a tool for analyzing scientific publications and

their links

(Scientific Paper Advisor - narzędzie do analizy artykułów naukowych i ich
powiązań)

Cezary Troska Antoni Dąbrowski

Praca inżynierska

Promotor: dr. Paweł Rychlikowski

Uniwersytet Wrocławski
Wydział Matematyki i Informatyki

Instytut Informatyki

06.02.2023

Abstract

Google Scholar is a useful tool for obtaining scientific articles on any subject. For
our engineering thesis, we decided to create a program extending Scholar’s function-
alities. Our web browser extension Scientific Paper Advisor lets the user see the
scientific articles within the context of references and uses of the publication, and
makes searching for topics for new papers easier by extracting research suggestions
left by authors in recently publicized studies. SPA is available in the Web Store,
the source code was published on Github, and this thesis describes the premise,
development process, and technical details of the project.

Google Scholar jest użytecznym instrumentem do odnajdowania artykułów na-
ukowych na dowolny temat. W ramach pracy dyplomowej podjeliśmy się stworzenia
narzędzia rozszerającego jego funkcje. Wtyczka Scientific Paper Advisor pozwala na
zobaczenie prac badawczych w kontekście ich odniesień i cytowań, oraz łatwe zna-
lezienie nowych tematów do badań dzięki sugestiom pozostawionym w najnowszych
publikacjach przez ich autorów. SPA jest już dostępne w Web Store, kod źródłowy
został upubliczniony w serwisie Github, a ten dokument opisuje założenia, proces
powstawania oraz szczeóły techniczne projektu.

https://chrome.google.com/webstore/detail/scientific-paper-advisor/pfilcjfeoihhgomdcdegipgphajoedim
https://chrome.google.com/webstore/detail/scientific-paper-advisor/pfilcjfeoihhgomdcdegipgphajoedim

Contents

1 Introduction 7

1.1 Concept and premise . 7

1.2 User needs assessment . 7

1.2.1 User profile . 7

1.2.2 Use cases and user stories . 8

2 Application overview 11

2.1 Functionalities provided . 11

2.2 Usage . 11

2.2.1 Instllation . 12

2.2.2 Custom backend – optional step 16

2.2.3 Example of usage . 16

3 Implementation details 27

3.1 Data gathering and web scraping . 27

3.1.1 Google Scholar . 27

3.1.2 Further research database . 29

3.1.3 Article popularity database 29

3.2 Frontend . 30

3.2.1 Browser extension . 30

3.2.2 Layout . 31

3.2.3 Backend communication . 32

3.2.4 Results visualization . 33

5

6 CONTENTS

3.3 Backend . 33

3.3.1 Django-based application . 33

3.3.2 PostgreSQL database . 34

3.3.3 Dockerization . 35

3.3.4 Google Cloud deployment . 36

4 Popularity prediction 37

4.1 Dataset . 37

4.2 Objective . 38

4.3 Feature engeneering . 39

4.3.1 Stylistic features . 39

4.3.2 Semantic features . 40

4.3.3 Side information . 40

4.4 Model – training and evaluation . 42

5 Analysis of ’further research’ segments 43

5.1 Category prediction . 43

5.2 Clusterization procedure . 44

5.2.1 Dimensionality reduction . 45

5.2.2 t-SNE vs PCA . 47

6 Conclusions 49

6.1 Further development . 49

Chapter 1

Introduction

1.1 Concept and premise

The topic of the project came from our experiences as students. Google Scholar was
invaluable in collecting information for presentations and seminars, so expanding on
its functionality will likely benefit the student community. Easy access to articles
of interest and ones derived from them is something that shall prove useful for the
wider scientific community (as we described in the following sections).

The other part of the tool is providing suggestions for new scientific studies. It
has a direct connotation with our case – deciding what topic to work on was not an
easy choice. We hope research suggestions found with this extension will help others
with similar dilemmas.

1.2 User needs assessment

The main goal of our work is to create an application that would be useful and would
provide valuable functionality. In order to do that, we had to first identify who our
target user is, and what needs our extension would satisfy.

1.2.1 User profile

Our application is dedicated to:

• students, researchers, and science enthusiasts,

• people who want to get their technical knowledge from the source,

• people who want to keep up to date with all the latest science news.

7

8 CHAPTER 1. INTRODUCTION

1.2.2 Use cases and user stories

In this section, we are going to provide the user stories i.e. a general description
of software features written from the perspective of the end user. Its purpose is to
articulate how a software feature will provide value to the customer.

Use cases map the structure of a system as it is seen by its users. It specifies
the behaviour of an application, by describing performed actions in order to deliver
the solution to a specific user problem.

Case I - category analysis Let us imagine a student fascinated with com-
puter engineering, especially computer architecture. He wants to know all about his
machine. Where they came from? What was the process of its development? How
operating systems were made? He is soon faced with the challenge of insufficient
knowledge sources. The pop science online articles were too little for him. How can
he effectively navigate in the vast ocean of scientific literature?

With our extension, he can simply identify the most distinguishable papers in
a particular domain of interest. He can also track the history of the development
of any computer part as well as side inventions. On top of that, the display is
interactive, intuitive and easy to use.

When a student searches for ”Operating systems” in the Google Scholar query
the browser reveals a ranking of publications. However, none of them is a good place
to start. Each seems too specific for a newcomer. The student decides to use our
extension on one of the found articles. It takes a while, but the information given
by the extension reveals insight into how this domain was explored in previous and
later research. Visualization of user actions can be seen in Figure 1.1.

Case II - researcher view The user is a novice scientist who specialises in
natural language processing. He has significant scientific knowledge but is not very
familiar with proceeding research, attempts to solve current main problems and who
are the big names in its science niche. Even though he can find simple answers to
all of these problems, they still do not provide an understanding of sophisticated
connotations of different names, publications, and journals. Also, articles found on
Google were probably too short on content and deeper analysis, which is essential
for him.

That is where our search engine extension finds its application. It not only
provides a list of direct relations between publications and their authors but also
displays in semantic-similarity space the current major problems in the specific do-
main. It is an operation that cannot be done easily by hand as it requires collecting
a significant database of the latest articles and using advanced models to analyse
them.

The use case might look as follows. The user tries to find the most prominent
publications from the past few years and see how he can extend their work. He

1.2. USER NEEDS ASSESSMENT 9

Figure 1.1: Analysis of the first record – ”Protection in operating systems” (central
node) shows previous publications. Among them ”Towards the design of secure
systems”, which is more general and can be used as an introduction to the topic of
the main article.

quickly comes across the title ”Attention is all you need” which is one of the greatest
publications in its domain. However, it is now a few years old. In order to see more
recent publications that pushed its work further the user asks the Scientific Paper
Advisor for an extended analysis of this publication. After pushing the extension
button, a scatterplot starts visualizing over 150 publications from the last two years
that are treating about natural language processing. The plot displays not only
those research papers but also their segments containing information about potential
further directions of development. The process visualized in Figure 1.2

Case III - fun and exploration The user is a science enthusiast who just
realised that all researches ever proceeded have its own unique structure – that all
the publications are somehow connected to each other. That the world of scientific
papers has a particular order and its rules are manifested in citations. But what to
do with that knowledge? How to explore such a broad domain?

Scientific Paper Advisor displays small parts of the ’science graph’ and gives
an opportunity to traverse it freely with an eye-pleasing display. It shows papers’
correlations much better than a bibliography. The user can move back and forth.
Check what are the origins of a certain domain and what are the latest achievements.

10 CHAPTER 1. INTRODUCTION

Figure 1.2: Visualization of publication and its sections consisting descriptions of
future work. All in a semantic-similarity space, the distance between points is in-
versely proportional to the similarity of the article subject.

Chapter 2

Application overview

This chapter provides a high-level description of the extension’s functionalities and
illustrates them with some usage examples. Details of those processes are presented
in Chapters 3, 4, and 5.

2.1 Functionalities provided

• Presenting a chosen article in the context of its references and citations, as a
graph.

• Providing basic information and links about the affiliated articles.

• Expanding relationship graphs to include secondary references or citations.
Such expansion can be repeated an unlimited amount of times, restricted only
by the existence of and access to the records requested.

• Presenting a summary of the most recent, important research topics in the
same category1 as the selected article. The summary includes the suggestion
given by researchers, the abstract, and some other basic information.

• Links to all the articles returned by any function of the extension.

• An option to use custom backend2 for collecting, processing, and storing article
data.

2.2 Usage

Let us go through an example of how to use the SPA tool.

1The categories we used for this project follow arXiv’s Category Taxonomy
2All the resources needed for deployment of a custom backend server for SPA3 extension are

provided in the project’s repository.

11

https://arxiv.org/category_taxonomy

12 CHAPTER 2. APPLICATION OVERVIEW

2.2.1 Instllation

The user can acquire the extension in two ways.

Installing from the Web Store

The easiest method is to get the extension from Chrome’s Web Store. Our product
can be found there under the title ’Scientific Paper Advisor’.

Figure 2.1: Search results for Scientific Paper Advisor on Chrome WebStore

https://chrome.google.com/webstore/category/extensions?hl=pl

2.2. USAGE 13

Figure 2.2: Scientific Paper Advisor’s page on the WebStore

Then the user shall click on the ’Add to Chrome’ button and the browser will
take care of the installation process.

Installing from source

Our tool is an open-source project, so anyone can deploy the extension from the
source, with potential customizations.

To do that clone the repository.

14 CHAPTER 2. APPLICATION OVERVIEW

Figure 2.3: Scientific Paper Advisor GitHub repository

Open the repository, go to the /extension directory, make any modifications
you want4 and build the project with the npx webpack command.

Then the built extension can be added to Chrome. Go to the ’Extensions’
page in your browser, turn on developer mode, select Import unpacked option, and
navigate to the directory with the extension’s manifest.

4In this tutorial we assume these modifications neither alter the deployment process nor break
the extension.

2.2. USAGE 15

Figure 2.4: The default state of the extension’s browser

Figure 2.5: The options mentioned in the tutorial are marked with red rectangles.

16 CHAPTER 2. APPLICATION OVERVIEW

Figure 2.6: System explorer should be directed to the directory with the extension’s
manifest.

2.2.2 Custom backend – optional step

If you want to host your own backend server for this extension, our repository is
prepared for that.

The recommended way of setting up a custom backend is using the docker-
compose with the stack.yml file. Before you run your setup you need to fill in the
configuration. The only required part is the SCRAPERAPI_KEY variable from the .env
file – you need to put your ScraperAPI account’s key in there to use proxy servers56.
When your configuration is complete, you can run create the container setup with
the command docker compose -f stack.yml up run in the /backend directory.

When the building process is done your server shall be listening on the 127.0.0.1:8000
address. You need to switch your extension to use that URL instead of the default
server for SPA. You can do that by clicking on the extension’s icon in the upper
right corner of your browser and selecting the ’local’ and ’http’ options from the
popup menu.

2.2.3 Example of usage

Let’s use our extension on the well-known paper ’Attention is All you Need’[6].
Once the user searches for it on Google Scholar the results page will contain a ’SPA’
5ScraperAPI is the only proxy service we support at the moment. If that changes in the future,

the setup options will be updated in the repository’s README
6Proxy service is required. Scholar will quickly block your backend without it for bot-like be-

havior.

https://docs.docker.com/compose/
https://docs.docker.com/compose/

2.2. USAGE 17

button. By clicking on it, the extension is notified the user is interested in learning
more about the article and a graph will be displayed.

Figure 2.7: Extension will add new elements to Google Scholar result pages. The
marked button will start the extension’s interaction with the article.

This graph contains information about a collection of suggestions for further
research from recently publicized articles in the same scientific category as ’Attention
is All you Need’.

The graph nodes are divided into three clusters, color-coded accordingly. Clus-
ters are created based on the articles’ similarity and for each of those clusters a
representative is chosen. Details of the clusterization procedure for further research
suggestions and the papers’ abstracts are described in Section 5.2.

18 CHAPTER 2. APPLICATION OVERVIEW

Figure 2.8: The first graph our extension return is a graph with further research
suggestions from the scientific category.

Figure 2.9: An example of suggestion discovered by the extension in a paper.

If the user wants to shift the focus of the graph they can use the ’Abstract’ but-
ton. This will recreate the graph, but this time the data shown and the clusterization
performed will focus on the abstracts of the publications.

2.2. USAGE 19

Figure 2.10: The graph can represent abstracts instead. The main article’s abstract
will be included in the representation.

The other type of graph we offer is specific to the selected article, not the
whole category. It shows the user the influence of the chosen article on the scientific
landscape. The user can see the references this article uses and publications that
cite it. Those relations are represented by the edges of the graph – an article on the
right end of the edge cites connected publication on the left side.

Additional information is coded in the size of the nodes. The diameter of the
node represents the number of citations of the corresponding paper. The size of the
node grows logarithmically and reaches a maximum at 1100 citations.

20 CHAPTER 2. APPLICATION OVERVIEW

Figure 2.11: Connection graph is another mode in which the extension can operate.

2.2. USAGE 21

Figure 2.12: The graph representation visualizes connections between articles with
a special focus on the chosen article. It is put in the center of the graph, in its own
column.

22 CHAPTER 2. APPLICATION OVERVIEW

Figure 2.13: Publications referenced by the main article are put on the left. Papers
that cite the main article are on the right

If the user wishes to, they can expand the graph in either direction. Clicking
on the ’Expand left side’ will give the user a new column on the left with secondary
references to the article, and ’Expand right side’ will give a new column on the right
with publications citing the publications from the previous rightmost column.

2.2. USAGE 23

Figure 2.14: The user can use the ’Expand right side’ and ’Expand left side’ buttons
to add new columns on the corresponding sides. This example shows a new column
on the right with articles that cite the publications with which they share an edge.

The user can just keep going with expansions as long as there are articles that
meet the requirements of the column.

24 CHAPTER 2. APPLICATION OVERVIEW

Figure 2.15: Graph can be extended multiple times, as long as there are articles
to be used for the next column. This figure represents an article where after three
extensions we reached the limit.

2.2. USAGE 25

Figure 2.16: Additional extensions won’t yield any results, because the rightmost
column contains only articles with no citations. It also contains only four articles,
because the previous column had just one article with any citations, precisely four

Chapter 3

Implementation details

The goal of this chapter is to describe the development process undertaken during
this project. The form we chose, i.e. a browser extension, comes with a significant
amount of limitations and specificity. The description of methods and tools utilized
while working on this task might prove useful for developers facing similar tasks in
the future.

3.1 Data gathering and web scraping

The central feature of our solution is to present the data about scientific papers
and their respective fields. Selecting the most pressing research suggestions and
estimating the popularity potential of a paper can be done but it requires extensive
data analysis.

Our approach assumes collecting three sets of different information: the details
of an article chosen by the user, including references and a list of available papers
citing the chosen article, the suggestions for further research presented in the papers
from recent years, and a large corpus of articles with citation statistics.

3.1.1 Google Scholar

One of the goals set for this extension is for it to work with any article Google
Scholar stores in form of a PDF file. It would be impossible to have all of the data
collected in advance, so the application needs to be able to gather this information
dynamically.

When the user requests a connection graph for a given article, the frontend
extracts the title and list of authors from the Google Scholar search result. That
information is sent to the backend and the server tries to find the article details.
The Advanced Search option was helpful in finding the user’s chosen article with

27

https://scholar.google.com/intl/en/scholar/help.html#searching

28 CHAPTER 3. IMPLEMENTATION DETAILS

the least amount of queries.

Scholar does not have an official public API so we decided to use an unofficial one
called scholarly. This python library helped us greatly with handling communication
with Google Scholar. It passes our queries to the browser and parses the response
into a list of Publication objects. Thanks to that functionality we do not have to
attempt parsing the Google Scholar output by ourselves. Those Publications objects
contain all the information we need for our functionalities, including the number of
citations and abstract. On top of that scholarly provides us with a citedby function
that when given a Publication object returns a list of papers that reference the
corresponding print.

A piece of information which turned out to be especially useful in our endeavor
was a list of articles citing the requested paper. This data allows us to create the
right side of the connection graph, the side representing the articles that stem from
the chosen one.

The backward snowballing process required a different approach. Neither Google
nor any other public system shares records of articles’ references that we can use for
arbitrary articles in real-time. Thus, the solution we decided to go with was extract-
ing that information from the article text itself. Frontend includes the PDF link to
the article in the request sent to the backend. This link is used for downloading
the PDF content and passing it to the parsing model. We found a service designed
for this exact case –Science-parse-api. This tool extracts the bibliography from the
given PDF and parses it into a list of references. We can use that list to collect
the titles and authors of referenced articles, which in turn allows us to find those
publications with scholarly and make them into nodes in the connection graph.

To create additional columns in the graph2.14 the whole process was repeated
for each of the representatives from the previous layer. Each elaboration effort is
carried out in a separate processing thread. In the end, the results are gathered
and a constant-size-subset is chosen, based on the number of citations of the found
articles (or the prediction of the number of citations, in the case of more recent
articles).

A significant obstacle we encountered in this step was Google Scholar’s scrap-
ping prevention mechanisms. Bot-like demeanor quickly leads to verification requests
in form of CAPTCHA tests. To work around this we utilized proxy servers masking
the patterns of the automated behavior. To attain those proxies we utilized Scrap-
erAPI. They handled solving CAPTCHA and rotating proxies. An additional cost
of this solution was a hit to performance. Requests going through ScrapperAPI’s
servers have a delay of up to 14 seconds, a time the service needs to work around
the Scholar’s safeguards1. This is the sole reason for the noticeable waiting time the

1The extension is now officially distributed in Chrome’s Web Store and passed the Google screen-
ing process, so we assume the company is fine with our current approach. We will be lobbying for
a release of an official API for Google Scholar which could be used in such tools without the need

https://pypi.org/project/scholarly/
https://pypi.org/project/science-parse-api/
https://www.scraperapi.com/
https://www.scraperapi.com/

3.1. DATA GATHERING AND WEB SCRAPING 29

user might experience when requesting a connection graph for an article the backend
hasn’t worked on before.

3.1.2 Further research database

The goal of this database was to gather and analyze all of the suggestions for research
projects given by scientists in recently released papers. We defined those proposals
as sentences containing specific phrases: further research, further study, future work,
additional research, further analysis, further examination, additional investigation
or additional studies. Those suggestions will be sorted according to arXiv’s category
taxonomy and for each category, representatives will be selected.

The first step to do was to collect the texts for processing. We tried doing that
with an official arXiv API but the limitations on the number of requests established
in the API’s terms of service made this process slow and inefficient. We found an
alternative in the form of a Kaggle database kept up to date by arXiv. This is one of
their suggested methods of bulk access. With this resource, we downloaded 250.000
papers released in the year 2022 from various categories.

Exact information to which category the paper belongs was extracted with the
help of the API. This information was useful for two reasons – we were interested
in sorting the research suggestions by this metric but we needed to create a model
that would assign the categories to papers not stored in arXiv.

The final result was a database containing further research requests we could
use in our feature recommending topics for new studies.

3.1.3 Article popularity database

Another feature offered by our browser extension is predicting the future popularity
of recently added articles. To do that we needed to collect a database of articles
with citation statistics from a chosen timeframe. Besides the information about the
number of citations, we wanted to collect data like the paper’s authors and their
affiliations, where the research was released, the abstract, and the category of the
research.

All of this information is offered by Google Scholar, but the aforementioned long
request processing times imposed by the proxy servers and the limited number of
uses our ScraperAPI package is allowed made this approach undesirable for collecting
a large set of data.

We requested access to some proprietary databases. This effort resulted in ob-
taining an API key for Semantic Scholar. This organization provides a vast selection
of information about international academia and shares it with researchers, with a

for a proxy server as a workaround.

https://arxiv.org/category_taxonomy
https://arxiv.org/category_taxonomy
https://pypi.org/project/arxiv/
https://arxiv.org/help/api/tou
https://www.kaggle.com/datasets/Cornell-University/arxiv
https://arxiv.org/help/bulk_data
https://www.semanticscholar.org/product/api

30 CHAPTER 3. IMPLEMENTATION DETAILS

special focus on AI development. This resource proved invaluable in developing the
popularity prediction model.

Semantic Scholar’s data collection can be accessed in two ways: with an official
RESTful web API and an unofficial Python client. Initially, we hoped the Python
client would be sufficient for all our needs but during the development process it
turned out to be unreliable with some types of data, like details about the authors.
We filled in that blank by communicating directly with the web API via Python’s
requests library.

3.2 Frontend

Scientific Paper Advisor’s frontend acts as an interface between the user and a
backend server. Its job is to integrate all of our functionalities into Google Scholar
in an intuitive and non-invasive way.

3.2.1 Browser extension

Our client was developed as a browser extension. We decided to use this option
to make the installation process as seamless as possible for the users - anyone who
wants to use our tool just needs to find it in the Chrome Web Store (images ??) and
they are ready to go.

The object defining an extension is its manifest. This file defines when the
functionalities will be allowed to run and lists all the files the extension consists
of. Our tool gets activated only when the user enters pages with Google Scholar
results, so there are no situations where we would waste the computer’s resources
on processing pages without scientific papers.

https://pypi.org/project/semanticscholar/
https://pypi.org/project/requests/

3.2. FRONTEND 31

Figure 3.1: The icon representing Scientific Paper Advisor

The process of adding an extension to the Chrome Web Store required four
steps. Firstly, we had to create Google Developer Account. Then we were able to
upload the extension code. The initial validation requires adding descriptions and
promotion materials. In this process, we were also asked to explain all the space and
access requirements that our extension needs. After adding a lengthy description
the extension was sent for verification. After a few days it was available publically
in the store. Each new update required repeating those steps.

3.2.2 Layout

After installing our application users will notice new elements added to the page
with Google Scholar search results.

Interaction with our features starts when the user clicks on a ’SPA’ button found

32 CHAPTER 3. IMPLEMENTATION DETAILS

right under a link to the paper’s PDF. Clicking on it is a signal to the extension that
the user wants to investigate the connections this paper has in its field of study.

Clicking the button will cause a new element to show up, a menu presenting
graphical representations of the data gathered about the article. The user can use
the buttons on top of the menu to switch between two graphs: the connection graph
and the further research graph. The further research graph is the one chosen by
default, so it will show up first when the menu is displayed.

When the user switches to the connections graph two more buttons will become
available. They are located below the graph and labeled as ’Backward snowballing’
and ’Further citations’. They will cause the expansion of the graph on the left side
or the right side, respectively. The details behind this process were described in
Section 3.1.1 of this paper.

Collecting all of the information, especially for the connection graph, takes some
time. The extension will signal to the user that it is in the process of collecting data
with a spinner animation. This animation will be automatically replaced by the
graph once the graph is ready. This is to let the user know that the extension is
working on their request and did not just crash.

3.2.3 Backend communication

Collecting the information for the construction of either of the graphs is not a task
for the frontend. Execution times would be too dependent on the client’s hardware,
processing of the data would be unhandy from the developers’ perspective and we
would have to share sensitive information with the client, such as API keys to our
proxy server.

Because of it, the forntend is tasked with gathering basic information available
locally on the loaded page, without additional requests. This information includes
the title of the user’s selected article, a list of authors, and a link to the paper’s
PDF. This data is then sent to the backend. The backend’s side of the processing
is described in Section 3.3.1.

The backend responds with a JSON representation of the graph. It contains
all the information frontend needs for a graphical representation of the requested
aspect.

Further communication with the backend will take place if the user decides
to use the ’Backward snowballing’ or ’Further citations’ buttons. In this case, the
frontend sends the schema of the currently rendered graph so that the backend does
not have to create it from the very beginning but just needs to elaborate on the
current state. The response is a JSON with the updated graph.

3.3. BACKEND 33

3.2.4 Results visualization

We use Plotly.js library for creating the graphs from the JSON files received from
the backend.

An important, extension-specific detail we had to keep in mind is that we are
restricted to using ’strict’ versions of the packages.

Importing modules in the content script (the main script of the extension) is
heavily restricted, so to be able to use the Plotly object we had to find a workaround.
The solution came in form of the webpack module bundler. It allowed us to convert
all the resources used by our content script into one static asset, the state matching
Chrome’s extension standards.

The diameter of the markers reflects the popularity of the article it represents.
Users might click on them to open the webpage with the requested publication.

3.3 Backend

The backend part of our application is responsible for finding, collecting and storing
the data about the articles requested by the user.

3.3.1 Django-based application

The backend of the extension was created using Django[11] framework. We decided
to use it based on prior familiarity, support for our chosen database management
system, and the detailed documentation it provides. Our Django project has two
functional parts (’applications’ in this framework’s terminology), each responsible
for one type of graph we provide.

During the development we relied on the lightweight server provided by Django
as for the production environment we decided to go with the Gunicorn.

articlegraph application

The application responsible for the connection graph provides three endpoints cor-
responding to three methods of expanding graph information.

• \articlegraph is the endpoint to which the frontend sends a request for the
base of the graph, which consists of the article chosen by the user, its direct
references, and works citing the central publication. The request contains the
article’s title, list of the authors, and the link to the PDF.

• \articlegraph\expandleft - this endpoint lets the frontend add the next column

https://plotly.com/javascript/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://www.npmjs.com/package/plotly.js-strict-dist-min
https://webpack.js.org/
https://gunicorn.org/

34 CHAPTER 3. IMPLEMENTATION DETAILS

of references to the left side of the graph. This column will contain publica-
tions used in the previous rightmost column. The request contains the JSON
representation of the current state of the graph.

• \articlegraph\expandright - similar to the \articlegraph\expandleft endpoint.
The frontend sends here the JSON representation of the current state of the
graph. The response is the JSON with a new row to the right that contains
articles citing the articles from the previous leftmost column.

The details of the article are found based on the title and list of authors. We
create a query that is run in Google Scholar with the use of the scholarly. This yields
a Publication object that contains details about the article. The scholarly lets us
use this Publication object to get a list of citations of the represented paper and one
of the details that object contains is the link which can be used to download the
contents of the article. The list of citations is sorted by popularity and truncated to
a constant maximum size. The list of references is extracted from the article’s PDF
with science-parse-api library, then they are converted into the Publication objects.

When one extends the graph, the operations described above are applied to
each of the articles from the previous column. The results are concatenated, sorted
by popularity and truncated.

The edge in the graph represents the citation relationship. The article on the
right side of the edge cites the publication on the left.

To keep track of the edges and create the layout for the visual representation of
the graph, we utilized NetworkX library. It provides a function multipartite layout
that returns coordinates which frontend’s Plotly.js will use to create a graph with
evenly spaced nodes and columns.

frquesions application

The application connected with a display of the ’further research’ plot has only one
endpoint \frquestions. It receives the URL of the currently analyzed article and
passes it to the backend. The server then sends a request to Google Scholar for
a full publication PDF, which is later parsed, analyzed and sent to frontend with
other articles from the same domain.

3.3.2 PostgreSQL database

Gathering information by scrapping the web is a time-consuming process. Once the
information about the article is collected, it is stored in the database to speed up the
resolution of user requests. This allows us to retrieve it locally in case it is needed
in the future.

https://pypi.org/project/science-parse-api/
https://networkx.org/

3.3. BACKEND 35

Data is stored in a PostgreSQL database, running in the Docker container
(more on the usage of Docker in this project in section 3.3.3). Django supports
this database management system, so we were able to use its Models approach to
integrate the databases into the project.

We created Models representing an article, a citation relation between pieces,
and a result of processing a PDF for the further research section. The getter func-
tions we constructed for articles or further research results first check for the objects
in the database before trying to get them by other means. If the objects are not
present in the PostgreSQL, at the end of the getter function, we save them.

Articles are saved in the byte stream format with a help of the pickle library.
This allows us to save and load the objects from the database while keeping the
properties of the objects storing the data. We use it to always keep the information
about an article as an instance of a Publication class. The process of using byte
streams with the database is easy thanks to the PickledObjectField, table column
type added with the django-picklefield library.

3.3.3 Dockerization

Scientific Paper Advisor’s backend uses Docker[3] to quickly, and regardless of hard-
ware, deploy services it depends on. The two services in question are the PostgreSQL
database and the Science Parse server.

Science Parse is a service allowing to swiftly analyze scientific papers’ PDFs.
It handles extracting parts important for our application — title, authors, abstract
and list of references. It uses a model trained specifically for handling scientific
papers, outperforming other PDF text extractors. However, for proper functioning,
it requires its own server. The recommended method of deploying that server is with
a docker container with a port published for communication. Due to the fact that
we were already considering Docker for handling our database needs, this additional
container could be added without much additional development work.

Having a dockerized database is beneficial for many reasons, especially during
development. Using Docker containers guarantees configuration consistency across
the developers, so we can be certain that the mechanisms we create will work regard-
less of the deployment site. It allows us to quickly reinitialize the whole database
in case we want to start from a clean slate. It is also secure – we can isolate the
container so it is only accessible from the machine running the server and is not
exposed to any outside ports.

Putting those two services in the containers persuaded us to go one step further
and put the main application server in a container as well. We added a Dockerfile
that creates the environment required for the server to run and exposes it, so it can
have its ports mapped to the host and work as if it was deployed on a standard

https://docs.djangoproject.com/en/4.1/topics/db/models/
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://github.com/allenai/science-parse
https://hub.docker.com/r/ucrel/ucrel-science-parse

36 CHAPTER 3. IMPLEMENTATION DETAILS

machine. The main goal guiding us in this endeavor was to make the deployment
process as easy as possible. Without the dockerization anyone who would want
to run our server would have to provide a properly configured database, Python
with all the requirements, and on top of that they would have to install Docker
anyway because it is required for the Science Parse component. This process is
counterproductive if the goal of the project is supposed to gain any traction and
encourage other developers to use and contribute to the project. Such an approach
would only overwhelm potential contributors with all the requirements.

The current docker setup reduces the deployment to filling in the configuration
and running a single command. With docker compose -f stack.yml up docker
will prepare a collection of containers with a main one running our server and lis-
tening for any requests from the frontend.

3.3.4 Google Cloud deployment

We want our extension to be an out-of-the-box solution. The first step to achieving
this was getting it available in the Web Store, but the other necessary component is
a central, publicly available server that anyone not wanting to run their own backend
instance can use.

To achieve this we decided to use the services of Google Cloud. This cloud
platform allowed us to create a virtual machine and assign an external, static IP
that can be reached by any instance of our frontend. This is where the dockeriza-
tion turned out useful again – deployment of our backend was this freshly created
machine, which was swift and painless. We just had to install the docker-compose
from its repository, clone the source code from the repository and order the docker
to initialize containers. We had the backend working in no time and updating it
after the code changes was equally straightforward.

The only new hurdle posed by this remote backend was securing the connection.
Google accepted insecure connections to the localhost but for the external IP https
was strictly required. Because of this, we had to go through the process of getting
our instance valid SSL certificates. In the end, we secured them with the Let’s
Encrypt provider.

https://letsencrypt.org/
https://letsencrypt.org/

Chapter 4

Popularity prediction

It is fairly easy to tell whether a scientific publication is worth reading when we
see its impact on the community. For papers that have five years or more, we have
strong indicators of popularity like the number of citations, journals or conferences
in which it occurred, and some alternative metrics like the number of downloads or
the number of web searches. Meanwhile, fresh papers can not be measured in the
same way as there is not a sufficient amount of data. It turned out that we had
to find a solution for this situation in case a user of our extension wants to explore
more recent study papers.

The problem of automatic citability prediction is well known in scientometrics
– the field of study concerned with the measurement and analysis of scientific lit-
erature. Yet we could not find any pre-trained model or even its pre-implemented
architecture resolving that issue. Therefore we were forced to create our one using
natural language processing methods[2].

4.1 Dataset

Research papers are usually publicly accessible, frequently with extensive side in-
formation like the citation count, the date and place of publication, the field of
study, etc. It seems to be very user-friendly as long as you are not trying to get
too much data. We tested multiple different APIs from several different electronic
repositories of scientific content – arXiv, Elsevier, and Web of Science, to name
some of them. We also tried some independent scraping programs like ScraperApi
or Scholarly. However, none met our expectations. Each one had its unique draw-
backs that prevented collecting data. We had problems with slow response time,
lack of information about citation count, captcha blockades, and poorly designed
search engines. Nevertheless, we were finally able to collect a significant amount of
data thanks to Semantic Scholar. It is an online repository of scientific literature,
which answered our request and granted us access to their API for scientific research

37

https://www.semanticscholar.org/

38 CHAPTER 4. POPULARITY PREDICTION

Figure 4.1: Citability distribution in the collected dataset. The number of overall
samples might explain the histogram discontinuity and roughness as they are not as
prominent in larger datasets[9].

purposes. We collected more than 130 thousand papers, from which about 20% were
removed in pre-processing. As a result, we obtained records with information about
the following features: title, abstract, authors, authors’ affiliations, venue, ”is open
access”, publication year, journal, and citation count.

4.2 Objective

In the best-case scenario, we would like to create a model that can accurately predict
the number of citations, especially identifying state-of-the-art publications. How-
ever, if we would give any predictive algorithm a goal to minimize MSE it would
most likely always answer 0 and achieve a very high score. It is due to the uneven
distribution of citation count among publications. As one may suspect, there are
very few popular papers meanwhile many are less noticeable. Namely 25% of papers
have 0 citations and only 10% have more than 32. The whole distribution of our
dataset is presented in Figure 4.1.

To overcome the problem of high skewness around lower values described broadly
in literature[5], we decided that our goal would be to guess the interquartile range
of distribution rather than a particular number of citations. In practice, it means
that we created roughly equal size classes of papers with 0; 1 to 4; 5 to 16; and more

https://en.wikipedia.org/wiki/Mean_squared_error

4.3. FEATURE ENGENEERING 39

than 16 citations, which lead us to a problem of classification instead of regression.

4.3 Feature engeneering

Analyzing any text with machine learning models requires creating a representation
of its content and side information that can be understood by a computer. There
are plenty of pre-trained models that can create word embeddings. However, there
are a few that can be applied to articles or even sentences, not to mention the side
information embeddings, which have to be custom-made.

4.3.1 Stylistic features

According to the research of Sergio Jimenez et al. about the stylometry of pub-
lication titles and abstracts[9], stylistic features are surprisingly strong predictors
of paper citability. For each sample, they were extracting 3578 stylistic features
– simple measurements of text like the number of sentences, the average number
of tokens in a sentence, the percentage of alphabetic characters, the percentage of
numeric characters, the average length of tokens, and so on. The study looked at
the impact of individual features on the final prediction. Based on their analysis, we
used three metrics with the highest correlation to the result: the POS-tag frequency,
the POS-tags bigrams frequency, and Corpus Spectral Signatures.

The first two sets of attributes refer to the analysis of word parts of speech
(POS). The process of feature extraction was initialized by splitting the title and
the abstract separately into lists of tokens. Each list accordingly was mapped on
the equivalent list of POS tags. Next, the frequency of each POS tag was computed
and stored as a final feature. We also calculated the frequencies of the 25 POS-tag
bigrams that, according to mentioned research, were most promising.

Corpus Spectral Signature (CSS) is a text metric introduced by Sergio Jimenez
et al. [9], that takes into account the whole corpus in which it is located. It involves a
significant amount of pre-processing, however afterwards we get fast and easy-to-get
text characteristics. We will describe the process of applying CSS based on its use
in a particular case. For a further explanation, we recommend turning to mentioned
publication.

In order to create a bigram Corpus Spectral Signatures, we have to extract all
bigrams (consecutive pairs of characters) from the whole corpus. Next, we calculate
the negative log frequency of each and split them into ten bins based on that value.
The threshold for each bin is evenly spread from 0 to the value of the most common
bigram. Now, to calculate the ’signature’ of the text we have to assign each of its
bigrams to a bin. The number of elements in each bin separately creates ten features
which constitute text Spectral Signature.

40 CHAPTER 4. POPULARITY PREDICTION

For simplicity, we described the process of creating CSS with fixed hyperpa-
rameters. However, we do not have to and we did not use it only in that way. The
number of bins as well as the number of characters in the n-gram can be adjusted.

Table 4.1 presents CSS analysis on three different levels. a) shows the distribu-
tion of bin values across the whole corpus for bigrams and trigrams. It tells us that
the CSS method is applicable to our problem as we get almost the same distribution
as the inventors of this metric. The wider look at the spectral analysis presented
in b) gives us the impression that it in fact gains some valuable information or at
least is a strong category indicator. c) shows how radically different the Spectral
Signatures of low-cited papers are when compared to the most popular ones. Even
though the sample here is very small and might not be representative, we know from
the work of Sergio Jimenez et al. that the CSS of the publication title and abstract
in fact are strongly correlated with the number of citations.

4.3.2 Semantic features

We can imagine that when a scientist specializing in a certain domain reads a title
and abstract of a publication, he already knows or at least has strong predictions
about the popularity that this publication is going to gain. Therefore analyzing the
meaning of its content with an artificial intelligence model seems like the right way
to predict citability. We used transformer model[7] to separately create a title and
abstract embeddings. We also tested a pre-trained transformer model[10] made for
the question-answering problem. Although it gets slightly better results, the time
complexity was not acceptable.

4.3.3 Side information

With no surprise, we found out that such article characteristics as authors’ names,
their affiliations, and place of publication (journal/conference name) are strong pre-
dictors of the number of citations. In our corpus on average 64% of authors’ pub-
lications were in the same class of citability (0; 1-5; 6-16; ¿16). With affiliations,
this score was even higher – 72%. Therefore we considered using this information
for predicting popularity.

In order to create article characteristics applicable to the predictive model we
created three rankings: average citability of authors, average citability of affilia-
tions and average citability of publication venues. Then any new article gets three
indicators of being in the top 10% of the ranking.

4.3. FEATURE ENGENEERING 41

a) CSS of the whole corpus.

b) CSS of a category.

c) CSS of a single publication.

Table 4.1: CSS analysis. The colours are representing the general frequency of
bigrams in a bin. Blue ones are the most frequently seen, meanwhile moving toward
red we get the least common.

42 CHAPTER 4. POPULARITY PREDICTION

Multi-layer Perceptron

Stylistic
features

Semantic
features

Side
information

Training set
accuracy

Test set
accuracy

Architecture – widths
of consecutive layers

X 57.92% 36.02% 40, 40, 40, 40, 40

X 99.58% 37.52% 900, 500, 200, 100, 50

X 32.78% 32.71% 70, 40, 20

X X 99.66% 38.91% 900, 500, 200, 100, 50

X X 58.10% 36.88% 40, 40, 40, 40, 40

X X 99.17% 38.08% 900, 500, 200, 100, 50

X X X 98.70% 40.36% 250, 250, 125

Table 4.2: The influence of features on accuracy of MLP classifier

4.4 Model – training and evaluation

All of the abovementioned text characteristic methods create 929 numerical features
for each publication, which were used as a basis for our prediction. We tested a
few different approaches. Firstly a linear model but it gave us hardly any results
even after applying L2 normalization. Next, we moved to more sophisticated ones.
As a final choice, we implemented a multilayer perceptron[4] consisting of five fully
connected layers of neurons. The layers’ width differs accordingly to the number of
features extracted from the article.

We tested the accuracy over different combinations of features. The results
are presented in Table 4.2. It turned out that the single stronges predictor is the
semantic representation of the title and the abstract. That is also highlighted in the
combinations of two sets of features. Stylistic embedding used with side information
indicators gave worst predictions than any prediction that included semantic anal-
ysis. It is kind of surprising that the encountered problem of overfitting in almost
every case of training neural networks on semantic embeddings does not cross out
the whole attempt. However, if solved, it could lead to much greater results. Nev-
ertheless, the general data behaviour seems to be quite understandable – the more
features, the better results.

Our final score of prediction direct class is not as high as in the research of
Sergio Jimenez et al. [9] (51.5%). The difference might have a few causes. In the
original paper, they were using about 3500 stylistic features, we took from that only
the top 150. Moreover, their dataset contains 750 000 publications, which is seven
times the size of ours. It might affect the process of training. On the other hand, we
used semantic features and external informations about publications, which should
lead to better results. Nevertheless, we are satisfied as we do not need an exact
classification of scientific papers, but only their popularity ranking, to show users
top results.

Chapter 5

Analysis of ’further research’
segments

To provide a better understanding of current problems in a certain domain of interest
we introduce a new feature that extracts the most crucial of present problems and
shows them in an easy-to-access way. When the user wants to analyze an article on
Google Scholar with our extension, he or she now has the possibility to check its
category and the category field.

5.1 Category prediction

A popular online repository of scientific publications (arXiv) suggests not too broad
and yet a complete set of classes that cover the majority of the research topics from
natural and formal sciences. Based on their classification, we created a model that
can predict the domain of a publication with high accuracy.

For training and testing purposes we used the arXiv dataset, which contains
more than 200GB of scientific publications in PDF form. As a way of pre-processing,
we extracted the titles, abstracts, and information about the arXiv categories. Then
we split the data in proportions of 80% to 20% into training and testing datasets.

The model itself is a combination of a text embedding model and a classifier. In
order to get text vectors we downloaded a pre-trained transformer model[7]. Then
we used the embeddings to train the K-nearest neighbors classifier. The testing
process shown in Figure 5.1 revealed the best hyperparameters that gave model
accuracy of 74%.

In order to assess how accurate the results can be about our predictions we
calculated 95% confidence intervals. Assuming that we are dealing with a binomial
distribution, the accuracy is the maximum likelihood estimator of success in the
Bernoulli trial i.e. guessing the right category. To calculate the confidence intervals

43

https://arxiv.org/

44 CHAPTER 5. ANALYSIS OF ’FURTHER RESEARCH’ SEGMENTS

Figure 5.1: Category prediction model testing over hyperparameters

of this estimator we used the Wald method as it is most commonly applied. Results
can be seen both in Figure 5.1 and 5.2. The second plot is especially important as
the sizes of categories were not equal. In this case, it is possible that the model
can achieve high accuracy just by guessing categories with the highest number of
samples, treating others as outliers. However, as we can see it does not happen here.
The expected accuracy of random predictions is one over the number of categories
which is approximately 0.66%. Here even categories with the highest margin of error
had significantly better results.

When the category of the publication is revealed we can move to the next step
in which similarities between the current publication and the other ones from this
domain are presented. For each of over 150 categories, on average we gathered
more than a thousand most promising research papers from the last two years. For
each domain separately we performed a clusterization procedure to retrieve the most
representative papers.

5.2 Clusterization procedure

Each category has far too many samples to present to the user in an ordinary way.
Creating a ranking of similar papers would neither be a novelty nor in any way
interesting. For that reason, we decided to show the results on a plot where each
article would be represented as a point in three-dimensional space. The distances

https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval#Wald_interval

5.2. CLUSTERIZATION PROCEDURE 45

Figure 5.2: Category prediction model testing over categories. To make it easier to
read, the results were sorted according to how they scored.

between points are inversely proportional to the semantic similarity of the articles
linked to them. It means that not only are we able to show plenty of publications
at the same time, but also their sophisticated correlations can be presented for
comparison. Still, a standard display 5.3 might seem to be overwhelming. Therefore
we propose a hierarchy – three clusters for each category, that groups all publications
into three groups with highlighted centroids. This approach suggests to the user to
check what the three main topics in a certain domain are as well as show the user a
smaller group of articles which are semantically similar to the one that is currently
analysed.

The process of clusterization in detail goes as follows. From each paper, we
extracted segments that contain information about researchers’ struggles and plans
for overcoming encountered problems. In order to achieve this we extracted all parts
of the papers that contained one of the formulas: ’further research’, ’further studies’,
’future work’, and several others. As a result of this process, we ended up with a list
of paragraphs representing each category. Then we used a pre-trained transformer
model[7] to create text embedding in 384-dimensional space. Each of those vectors
was passed to a K-means algorithm which allocated them into one of three classes.
In the following step, we found centroids of each cluster and returned them as the
most representative article in a domain. Next, we mapped each embedding into
lower-dimensional space and displayed them on a scatter plot 5.4. For additional
information, we repeated this process with abstracts instead of previously collected
’further research’ sections.

5.2.1 Dimensionality reduction

Dimensionality reduction is a well-known problem, which nowadays can be easily
solved with dedicated and pre-implemented algorithms like t-SNE[1]. However, it is
not the case here as we have to find a trade-off between the accuracy of the model,

46 CHAPTER 5. ANALYSIS OF ’FURTHER RESEARCH’ SEGMENTS

Figure 5.3: Category mapping without clusterization

Figure 5.4: Category mapping with clusterization. Points with higher colour inten-
sity are centroids.

5.2. CLUSTERIZATION PROCEDURE 47

its speed, and space requirements. Our algorithm has to be efficient as it will be run
on a server during the processing of a user request. t-SNE in this case is either too
slow or requires too much space.

When the user wants to analyze some article, our extension predicts its category
and extracts a segment that points to further research. Then it creates embedding of
the found segment. Now we face the problem of combining it with other publications
from this category and mapping it into two or three dimensions. Possible scenarios:

• We compute the embeddings of each paper from the current category. We
merge them with the requested by user article embedding. Then we apply
t-SNE → too time-consuming.

• We store pre-computed embeddings for each article from each category. We
create embedding of the requested article, then we apply t-SNE → too space-
consuming.

To overcome these problems, we assumed a different approach. We used the
Principal Component Analysis algorithm to extract three main features of the data.
It is not perfect due to loss of information. As a side note, removing all the other
dimensions is the cause of displaying centroids apart from the cluster centre. Never-
theless, PCA[8] has a unique property that when it once finds the matrix of transfor-
mation, there is no longer need to remember all the data that was used in training.
Therefore the solution seems to be a logical compromise in our application. It takes
a marginal amount of space - a 3-dimensional vector for each stored article and a
matrix of size 384×4 for each category. The time complexity of this approach is
reduced to a minimum, which is running a transformer to create text embedding
and multiplying it by a matrix of transformation.

5.2.2 t-SNE vs PCA

We performed some tests to see the difference in the performance of the two algo-
rithms in question. Results are displayed in Figures 5.5 and 5.6. To our surprise,
PCA seems to look better. Not only are the clusters maintained, but also the data is
less spread through space. In order to even be able to display t-SNE results properly
we had to remove outliers. It does not mean that PCA is better in general, it is just
more user-friendly in this case.

48 CHAPTER 5. ANALYSIS OF ’FURTHER RESEARCH’ SEGMENTS

Figure 5.5: Publication mapping onto 2D space with PCA and t-SNE. Colours
indicate clusters. Points with higher colour intensity are centroids.

Figure 5.6: Publication mapping onto 2D space with PCA and t-SNE. Colours
indicate clusters. Points with higher colour intensity are centroids.

Chapter 6

Conclusions

We achieved all the objectives that we set in the project declaration. We devel-
oped an application that might actually be useful for us and others. There were
many problems to overcome, and many important development decisions to make.
However, we believe ended up successful.

6.1 Further development

Further development is needed in a segment of graph generation. Time required
for creating this graph is far from optimal and strongly affects the quality of use.
The method of extracting and presenting ’further research’ segments might be also
improved as it is not always meaningful and is hard to understand without context.
Also, we would like to spend more time creating and analyzing the popularity pre-
diction model. It seems like a really interesting problem, which if solved might have
a huge impact on overall research proceedings.

49

50 CHAPTER 6. CONCLUSIONS

Contributions - distinct

Cezary Troska

Frontend
- extension skeleton
- integrating our features into the Google page
- introduction and configuration of webpack
- integrating Plotly.js into the extension.
- scraping relevant information from the Google Scholar result
- Connection Graph part of the extension
- asynchronous connections to the backend
- loading animations
- CSS
Backend
- Django project skeleton and configuration
- Django ’articlegraph’ application :
¬ gathering information about the articles in real-time
¬ parsing information into the graph form
¬ introducing proxy servers
¬ parallelization of the process
- introduction of the database into the backend
- dockerization of the project:
¬ creating containers out of the components of the project
¬ network configuration of this setup
- introduction of the Gunicorn server
- deployment on Google Cloud:
¬ preparing cloud instance to run the backend
¬ obtaining static IP and configuring the network
¬ SSL certification
- automated tests
Research
- collecting bulk amounts of arXiv articles
- collecting bulk amounts of article popularity data from Semantic Scholar
- creating efficient tools for mass paring of the data collected and parsing the raw data
Document
- Abstract
- Application overview

6.1. FURTHER DEVELOPMENT 51

Contributions - distinct

Antoni Dąbrowski

Popularity prediction:
- sending requests for access to APIs of online scientific repositories
- data preprocessing
- feature engineering
- testing different models
- testing the MLP model over different sets of features
- testing different architectures of the MLP model
- creating visualizations for this document
Category prediction:
- data preprocessing
- testing model over different hyperparameters
- extended analysis of the results
- creating visualizations for this document
’Further research’ analysis:
- data preprocessing - text embeddings
- solving the problem of dimensionality reduction
- clusterization
- processing all categories
Backend:
- establishing communication with frontend - ’further research’ plot
- creating database for processed articles
- developing fast way to process article
- preparing data for the plot in the frontend
- adding all pretrained model and preprocessed data to a pipeline
Frontend:
- handling communication with the backend - ’further research’ plot
- creating the ’further research’ plot
- adding switching buttons
- adding a popup for switching hosts
Deployment:
- creating Google Developer account
- uploading extension
- creating all extension descriptions and promotion images
- convincing Google staff that our extension is not harmfull
This document:
- ’Further research’ analysis
- Popularity prediction
- Conclusions
- Contributions (template)

52 CHAPTER 6. CONCLUSIONS

Contributions - common

Cezary Troska Contribution Antoni Dąbrowski

 ## Researching database for citability prediction ###
 #### Writing chapter: Introduction #
 # Writing chapter: Implementation details ####

 ####– small contribution, #– large contribution

Bibliography

[1] Laurens van der Maaten and Geoffrey Hinton. „Visualizing Data using t-SNE”.
In: Journal of Machine Learning Research 9 (2008), pp. 2579–2605. url: http:
//www.jmlr.org/papers/v9/vandermaaten08a.html.

[2] Dan Jurafsky and James H. Martin. Speech and language processing : an intro-
duction to natural language processing, computational linguistics, and speech
recognition. Upper Saddle River, N.J.: Pearson Prentice Hall, 2009. isbn:
9780131873216 0131873210. url: http://www.amazon.com/Speech-Language-
Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y.

[3] Dirk Merkel. „Docker: lightweight linux containers for consistent development
and deployment”. In: Linux journal 2014.239 (2014), p. 2.

[4] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. Cam-
bridge, MA, USA: MIT Press, 2016. url: http://www.deeplearningbook.
org.

[5] Lutz Bornmann and Loet Leydesdorff. „Skewness of citation impact data and
covariates of citation distributions: A large-scale empirical analysis based on
Web of Science data”. In: Journal of Informetrics 11.1 (2017), pp. 164–175.
url: https://EconPapers.repec.org/RePEc:eee:infome:v:11:y:2017:i:
1:p:164-175.

[6] Ashish Vaswani et al. „Attention is All you Need”. In: Advances in Neural
Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran As-
sociates, Inc., 2017. url: https://proceedings.neurips.cc/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[7] Nils Reimers and Iryna Gurevych. „Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks”. In: Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing. Association for Compu-
tational Linguistics, Nov. 2019. url: https://arxiv.org/abs/1908.10084.

[8] Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong. Mathematics
for Machine Learning. Cambridge University Press, 2020.

[9] Sergio Jimenez et al. „Automatic prediction of citability of scientific articles
by stylometry of their titles and abstracts”. In: (Dec. 2020). url: https:
//doi.org/10.1007/s11192-020-03526-1.

53

http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://EconPapers.repec.org/RePEc:eee:infome:v:11:y:2017:i:1:p:164-175
https://EconPapers.repec.org/RePEc:eee:infome:v:11:y:2017:i:1:p:164-175
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/1908.10084
https://doi.org/10.1007/s11192-020-03526-1
https://doi.org/10.1007/s11192-020-03526-1

54 BIBLIOGRAPHY

[10] Vladimir Karpukhin et al. „Dense Passage Retrieval for Open-Domain Ques-
tion Answering”. In: Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP). Association for Computational
Linguistics, Nov. 2020, pp. 6769–6781. doi: 10.18653/v1/2020.emnlp-main.
550. url: https://www.aclweb.org/anthology/2020.emnlp-main.550.

[11] Django Software Foundation. Django. Version 4.1. Feb. 1, 2023. url: https:
//docs.djangoproject.com/en/4.1/.

https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://www.aclweb.org/anthology/2020.emnlp-main.550
https://docs.djangoproject.com/en/4.1/
https://docs.djangoproject.com/en/4.1/

	Introduction
	Concept and premise
	User needs assessment
	User profile
	Use cases and user stories

	Application overview
	Functionalities provided
	Usage
	Instllation
	Custom backend – optional step
	Example of usage

	Implementation details
	Data gathering and web scraping
	Google Scholar
	Further research database
	Article popularity database

	Frontend
	Browser extension
	Layout
	Backend communication
	Results visualization

	Backend
	Django-based application
	PostgreSQL database
	Dockerization
	Google Cloud deployment

	Popularity prediction
	Dataset
	Objective
	Feature engeneering
	Stylistic features
	Semantic features
	Side information

	Model – training and evaluation

	Analysis of 'further research' segments
	Category prediction
	Clusterization procedure
	Dimensionality reduction
	t-SNE vs PCA

	Conclusions
	Further development

